Winter Contest 2022 Presentation of Solutions

January 29, 2022

Winter Contest 2022 Jury

- Felicia Lucke CPUIm
- Nathan Maier
 CPUIm
- Jannik Olbrich
 CPUIm
- Gregor Schwarz

Technical University of Munich

- Marcel Wienöbst
 University of Lübeck
- Paul Wild

Friedrich–Alexander University Erlangen–Nürnberg

Michael Zündorf
 Karlsruhe Institute of Technology

Big thanks to our test solvers

Gregor Matl

Technical University of Munich

Michael Ruderer

CPUIm

K: Kettle Kitten

Problem Author: Jannik Olbrich, Felicia Lucke

Problem

Given a volume v and the heights and radii of many cylinders, find a smallest cylinder with volume at least v.

K: Kettle Kitten

Problem Author: Jannik Olbrich, Felicia Lucke

Hand Hand and the second se

Problem

Given a volume v and the heights and radii of many cylinders, find a smallest cylinder with volume at least v.

Solution

- The volume V of a cylinder with height h and radius r is $V = \pi h r^2$.
- For each *i* calculate the volume V_i of the *i*-th cylinder and check whether $V_i \ge v$.
- Minimize over the volumes which are large enough.

L: Longbottom Leap

Problem Author: Jannik Olbrich

Problem

Given a binary string of length n, find the smallest integer $i \ge 1$ such that $32 \cdot 2^{i-1} \ge n$.

L: Longbottom Leap

Problem Author: Jannik Olbrich

Problem

Given a binary string of length n, find the smallest integer $i \ge 1$ such that $32 \cdot 2^{i-1} \ge n$.

Solution

Start with i = 1 and increment i until $32 \cdot 2^{i-1} \ge n$.

Print *i* times "long".

E: Enchanted Exam

Problem Author: Paul Wild

ىرى بى ئىرىيە بەيلەپ بىر بار بايا يۇلىرى ئۆكە تەرىپ

Problem

Find a hidden integer x ($1 \le x \le 100$) using at most 50 guesses. For each guess y, you will receive one of the following replies:

- equal, if y = x;
- factor, if y divides x;

- multiple, if x divides y;
- other, otherwise.

E: Enchanted Exam

Problem Author: Paul Wild

ى ----- دار دىلىرى ---- ئىلىلى<u>لىر</u>ىلىك مەرك-----

Problem

Find a hidden integer x ($1 \le x \le 100$) using at most 50 guesses. For each guess y, you will receive one of the following replies:

- equal, if y = x;
- factor, if y divides x;

- multiple, if x divides y;
- other, otherwise.

Solution

- Start by guessing 2. There are four cases, depending on the answer:
 - equal: The hidden number is 2. Terminate.
 - multiple: The hidden number is 1. Guess it, then terminate.
 - factor: The hidden number is even. Try all 49 candidates.
 - other: The hidden number is odd (but not 1). Try all 49 candidates.
- Many other solutions are possible, e.g. by using prime factorization.
- Challenge: what is the least number of guesses needed in the worst case?

G: Going for Gold

Problem

Given the rankings of n contestants in the first two events of a three-part competition, find an outcome for the third event such that contestant 1 wins. More formally:

Given are two permutations a_1, \ldots, a_n and b_1, \ldots, b_n . Find a permutation c_1, \ldots, c_n such that $a_1b_1c_1$ is minimal among all the $a_kb_kc_k$ $(1 \le k \le n)$.

G: Going for Gold

Problem

Given the rankings of n contestants in the first two events of a three-part competition, find an outcome for the third event such that contestant 1 wins. More formally:

Given are two permutations a_1, \ldots, a_n and b_1, \ldots, b_n . Find a permutation c_1, \ldots, c_n such that $a_1b_1c_1$ is minimal among all the $a_kb_kc_k$ $(1 \le k \le n)$.

Solution

- It is always optimal if contestant 1 wins the third event, that is, if $c_1 = 1$.
- The remaining contestants should be placed in reverse order of current rank:
 - The one with the minimal $a_k b_k$ should place last $(c_k = n)$.
 - . . .
 - The one with the maximal $a_k b_k$ should place second $(c_k = 2)$.
- If this is a valid solution, output it. Otherwise, output impossible.
- Time complexity: $\mathcal{O}(n \log n)$.

F: Forming Friendships

Problem Author: Marcel Wienöbst

Problem

Given a graph G, count the number of edges inserted by the following procedure: While there is a path a - b - c of length two, add edge a - c.

F: Forming Friendships

Problem Author: Marcel Wienöbst

Problem

Given a graph G, count the number of edges inserted by the following procedure: While there is a path a - b - c of length two, add edge a - c.

. .

ang begehet bei eine die gehet bei bei bei

Solution

- Key insight: Each connected component of G will be transformed into a clique.
- Hence, for each connected component C, count the number of missing edges

$$\frac{1}{2} \cdot \sum_{v \in C} (|C| - \operatorname{degree}(v) - 1)$$

and sum them all up.

- Complexity is $\mathcal{O}(|V| + |E|)$.
- Important: use 64-bit integers!

C: Cellar Chase

Problem Author: Felicia Lucke, Jannik Olbrich

Problem

Given a two-terminal-series-parallel (TTSP) graph G, find the size of a maximum cut that separates the graph into exactly two components such that two specified vertices s and t are in different components of the graph.

C: Cellar Chase

الإوليم والانتشار فتنتشر والتهافية بالمتعاد متعقر المتناد

Problem Author: Felicia Lucke, Jannik Olbrich

Solution

- For a graph G denote by cut(G) the maximum size of a cut as defined above.
- Use the recursive structure of the graph:

Calculate the size of the cut recursively.

I: Inconspicuous Identity

Problem Author: Gregor Schwarz

Problem

Given a square meters of fabric, compute the maximum area that can be kept dry by an umbrella which has 8 metal sticks of length x meters attached to its top.

والمراجعة والمتحد والمتحد والمتحد

I: Inconspicuous Identity

Problem Author: Gregor Schwarz

Solution

• Check whether the amount of fabric suffices to open the umbrella all the way (i.e. metals sticks are perpendicular to the handle).

المروا الإرتقيا بقفع المراب

- If not, use binary search or trigonometry to compute the maximum value for *d* so that the fabric suffices for the umbrella.
- Given *d*, compute the maximum area using trigonometry.

Problem Author: Paul Wild

Problem

Given integers n and k, draw n circles in the plane so that there are exactly k intersection points.

Problem Author: Paul Wild

ի արտում պետարդ

Problem

Given integers n and k, draw n circles in the plane so that there are exactly k intersection points.

Solution

- A solution exists if and only if $0 \le k \le n(n-1)$.
- The following construction works for all cases:

Problem Author: Paul Wild

a such a set of a set

Problem

Given integers n and k, draw n circles in the plane so that there are exactly k intersection points.

Solution

- A solution exists if and only if $0 \le k \le n(n-1)$.
- The following construction works for all cases:

Problem Author: Paul Wild

a such a set of a set

Problem

Given integers n and k, draw n circles in the plane so that there are exactly k intersection points.

Solution

- A solution exists if and only if $0 \le k \le n(n-1)$.
- The following construction works for all cases:

Problem Author: Paul Wild

a such a set of a set

Problem

Given integers n and k, draw n circles in the plane so that there are exactly k intersection points.

Solution

- A solution exists if and only if $0 \le k \le n(n-1)$.
- The following construction works for all cases:

a subrant strate d

Problem Author: Paul Wild

Problem

Given integers n and k, draw n circles in the plane so that there are exactly k intersection points.

Solution

- A solution exists if and only if $0 \le k \le n(n-1)$.
- The following construction works for all cases:

a subrant strate d

Problem Author: Paul Wild

Problem

Given integers n and k, draw n circles in the plane so that there are exactly k intersection points.

Solution

- A solution exists if and only if $0 \le k \le n(n-1)$.
- The following construction works for all cases:

a subrant strate d

Problem Author: Paul Wild

Problem

Given integers n and k, draw n circles in the plane so that there are exactly k intersection points.

Solution

- A solution exists if and only if $0 \le k \le n(n-1)$.
- The following construction works for all cases:

B: Basic Brewing

Problem Author: Michael Zündorf

Problem

Given pairs (a, b), multiply them with a value in [0, 1], sum them up such that the result is as big as possible and the ratio between a and b is x.

ومواجر الترابي والجرار والمترا

B: Basic Brewing

Problem Author: Michael Zündorf

Problem

Given pairs (a, b), multiply them with a value in [0, 1], sum them up such that the result is as big as possible and the ratio between a and b is x.

a second second second second second

Solution

We can partition the input into two sets:

- Those pairs with $\frac{a}{b} \ge x$
- Those with $\frac{a}{b} < x$

Observe that an optimal solution always contains all entries of one of the sets.

- Take all entries from set A and add entries from set B one by one.
- Getting as much as possible ↔ approach ratio *x* as slow as possible.
- Thus, first take entries with ratio close to x.

The total runtime is in $O(n \log(n))$ to sort entries by their ratio.

A: Alohomora and Colloportus

Problem Author: Michael Zündorf

Problem

Given a Graph G, change the edges of a single vertex such that the resulting graph is a simple cycle.

and a state of the second state of the second

A: Alohomora and Colloportus

Problem Author: Michael Zündorf

Problem

Given a Graph G, change the edges of a single vertex such that the resulting graph is a simple cycle. Alternatively, check whether G without a single vertex is a path.

and a state of the second state of the second

A: Alohomora and Colloportus

Problem Author: Michael Zündorf

Problem

Given a Graph G, change the edges of a single vertex such that the resulting graph is a simple cycle. Alternatively, check whether G without a single vertex is a path.

we are dealer and the starting of a starting of the

Solution

We only need to check a constant number of candidate vertices:

- 1. One vertex with degree greater 3.
- 2. All vertices with degree 3 which are adjacent to all other vertices with degree 3.
- 3. One vertex with degree 0.
- 4. One vertex with degree 1.
- 5. One vertex.

The check if G without a vertex is a path can be done in $\mathcal{O}(n)$ and thus, the solution is in $\mathcal{O}(n)$.

M: Magic Marbles

Problem Author: Michael Zündorf

Problem

Given a string where runs of consecutive equal characters are removed if the run has length larger then k, simulate q inserts of characters into this string.

M: Magic Marbles

Problem Author: Michael Zündorf

Problem

Given a string where runs of consecutive equal characters are removed if the run has length larger then k, simulate q inserts of characters into this string.

Solution

- You just need to simulate this efficiently.
- Either use a *treap* and keep track of run lengths.
- Or a *binary search tree* which contains runs.
- In both cases your data structure needs to efficiently do this:
 - Insert a character at a position.
 - Find the length of a run at a position.

Total runtime $\mathcal{O}(q \log(n))$

D: Document Dimensions

Problem Author: Michael Zündorf

Problem

Given a text with n words separated by spaces with total length W, replace some spaces with newlines such that the total height plus width of the text is minimized.

. .

••••

. .

D: Document Dimensions

Problem Author: Michael Zündorf

Problem

Given a text with n words separated by spaces with total length W, replace some spaces with newlines such that the total height plus width of the text is minimized.

Solution

• For a given width w we can find the minimal height greedily by only adding newlines when needed.

.....

- The next position where a newline is needed can be found in O(1) with a prefix sum over the lengths of the words.
- Therefore, the minimal height can be found in $\mathcal{O}(\frac{W}{W})$.

D: Document Dimensions

Problem Author: Michael Zündorf

Problem

Given a text with n words separated by spaces with total length W, replace some spaces with newlines such that the total height plus width of the text is minimized.

Solution

• For a given width w we can find the minimal height greedily by only adding newlines when needed.

.....

- The next position where a newline is needed can be found in O(1) with a prefix sum over the lengths of the words.
- Therefore, the minimal height can be found in $\mathcal{O}(\frac{W}{W})$.
- Calculating this for every width is in $\mathcal{O}(W \log(W))$.

H: Hidden Horcrux

Problem Author: Gregor Schwarz

Problem

Determine the number of water carriers that Harry needs to travel d days through the desert. Each person can carry c units of water but needs to drink 1 water unit a day.

H: Hidden Horcrux

Problem Author: Gregor Schwarz

Problem

Determine the number of water carriers that Harry needs to travel d days through the desert. Each person can carry c units of water but needs to drink 1 water unit a day.

Solution

- Distribute water among carriers so that Harry reaches day d c and still has full water capacity.
- From day d c onward, Harry travels alone.
- $c-2 \ge d-c$ must hold so that the last water carrier can return home.
- Simulate how far Harry can get with *n* water carriers. Binary search the minimum value for *n*.
- Alternative: Start at day d c with only one water carrier. Move the timeline backwards and add additional water carriers when necessary.

Language stats

Jury work

260 commits

Jury work

- 260 commits
- 522 secret test cases (\approx 40 per problem)

Jury work

- 260 commits
- 522 secret test cases (pprox 40 per problem)
- 103 jury solutions

Jury work

- 260 commits
- 522 secret test cases (\approx 40 per problem)
- 103 jury solutions
- The minimum number of lines the jury needed to solve all problems is

32 + 36 + 13 + 31 + 7 + 29 + 9 + 11 + 9 + 16 + 7 + 4 + 69 = 273

On average 21 lines per problem