Winter Contest 2022 Presentation of Solutions

January 29, 2022

Winter Contest 2022 Jury

- Felicia Lucke

CPUlm

- Nathan Maier

CPUIm

- Jannik Olbrich

CPUlm

- Gregor Schwarz

Technical University of Munich

- Marcel Wienöbst

University of Lübeck

- Paul Wild

Friedrich-Alexander University
Erlangen-Nürnberg

- Michael Zündorf

Karlsruhe Institute of Technology

Big thanks to our test solvers

- Gregor MatI

Technical University of Munich

- Michael Ruderer

CPUIm

Problem

Given a volume v and the heights and radii of many cylinders, find a smallest cylinder with volume at least v.

Problem Author: Jannik Olbrich, Felicia Lucke

Problem

Given a volume v and the heights and radii of many cylinders, find a smallest cylinder with volume at least v.

Solution

- The volume V of a cylinder with height h and radius r is $V=\pi h r^{2}$.
- For each i calculate the volume V_{i} of the i-th cylinder and check whether $V_{i} \geq v$.
- Minimize over the volumes which are large enough.

Problem

Given a binary string of length n, find the smallest integer $i \geq 1$ such that $32 \cdot 2^{i-1} \geq n$.

L: Longbottom Leap

Problem Author: Jannik Olbrich

Problem

Given a binary string of length n, find the smallest integer $i \geq 1$ such that $32 \cdot 2^{i-1} \geq n$.

Solution

Start with $i=1$ and increment i until $32 \cdot 2^{i-1} \geq n$.
Print i times "long".

Problem Author: Paul Wild

Problem

Find a hidden integer $x(1 \leq x \leq 100)$ using at most 50 guesses. For each guess y, you will receive one of the following replies:

- equal, if $y=x$;
- factor, if y divides x;
- multiple, if x divides y;
- other, otherwise.

Problem

Find a hidden integer $x(1 \leq x \leq 100)$ using at most 50 guesses. For each guess y, you will receive one of the following replies:

- equal, if $y=x$;
- factor, if y divides x;
- multiple, if x divides y;
- other, otherwise.

Solution

- Start by guessing 2. There are four cases, depending on the answer:
- equal: The hidden number is 2 . Terminate.
- multiple: The hidden number is 1 . Guess it, then terminate.
- factor: The hidden number is even. Try all 49 candidates.
- other: The hidden number is odd (but not 1). Try all 49 candidates.
- Many other solutions are possible, e.g. by using prime factorization.
- Challenge: what is the least number of guesses needed in the worst case?

Problem Author: Paul Wild

Problem

Given the rankings of n contestants in the first two events of a three-part competition, find an outcome for the third event such that contestant 1 wins. More formally:

Given are two permutations a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n}. Find a permutation c_{1}, \ldots, c_{n} such that $a_{1} b_{1} c_{1}$ is minimal among all the $a_{k} b_{k} c_{k}(1 \leq k \leq n)$.

Problem

Given the rankings of n contestants in the first two events of a three-part competition, find an outcome for the third event such that contestant 1 wins. More formally:

Given are two permutations a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n}. Find a permutation c_{1}, \ldots, c_{n} such that $a_{1} b_{1} c_{1}$ is minimal among all the $a_{k} b_{k} c_{k}(1 \leq k \leq n)$.

Solution

- It is always optimal if contestant 1 wins the third event, that is, if $c_{1}=1$.
- The remaining contestants should be placed in reverse order of current rank:
- The one with the minimal $a_{k} b_{k}$ should place last $\left(c_{k}=n\right)$.
- ...
- The one with the maximal $a_{k} b_{k}$ should place second $\left(c_{k}=2\right)$.
- If this is a valid solution, output it. Otherwise, output impossible.
- Time complexity: $\mathcal{O}(n \log n)$.

Problem Author: Marcel Wienöbst

Problem

Given a graph G, count the number of edges inserted by the following procedure: While there is a path $a-b-c$ of length two, add edge $a-c$.

F: Forming Friendships

Problem Author: Marcel Wienöbst

Problem

Given a graph G, count the number of edges inserted by the following procedure: While there is a path $a-b-c$ of length two, add edge $a-c$.

Solution

- Key insight: Each connected component of G will be transformed into a clique.
- Hence, for each connected component C, count the number of missing edges

$$
\frac{1}{2} \cdot \sum_{v \in C}(|C|-\operatorname{degree}(v)-1)
$$

and sum them all up.

- Complexity is $\mathcal{O}(|V|+|E|)$.
- Important: use 64-bit integers!

Problem Author: Felicia Lucke, Jannik Olbrich

Problem

Given a two-terminal-series-parallel (TTSP) graph G, find the size of a maximum cut that separates the graph into exactly two components such that two specified vertices s and t are in different components of the graph.

C: Cellar Chase

Solution

- For a graph G denote by $\operatorname{cut}(G)$ the maximum size of a cut as defined above.
- Use the recursive structure of the graph:
- If G is " () ", $\operatorname{cut}(G)=1$.
$\mathrm{O}=\mathrm{O}$
- If G is $A+B$, where A and B are both TTSP, then $\operatorname{cut}(G)=\max (\operatorname{cut}(A), \operatorname{cut}(B))$.

- If G is $A * B$, where A and B are both TTSP, then $\operatorname{cut}(G)=\operatorname{cut}(A)+\operatorname{cut}(B)$.

- Calculate the size of the cut recursively.

Problem Author: Gregor Schwarz

Problem

Given a square meters of fabric, compute the maximum area that can be kept dry by an umbrella which has 8 metal sticks of length x meters attached to its top.

I: Inconspicuous Identity

Problem Author: Gregor Schwarz

Solution

- Check whether the amount of fabric suffices to open the umbrella all the way (i.e. metals sticks are perpendicular to the handle).
- If not, use binary search or trigonometry to compute the maximum value for d so that the fabric suffices for the umbrella.
- Given d, compute the maximum area using trigonometry.

J: Joint Jinx
Problem Author: Paul Wild

Problem

Given integers n and k, draw n circles in the plane so that there are exactly k intersection points.

Problem Author: Paul Wild

Problem

Given integers n and k, draw n circles in the plane so that there are exactly k intersection points.

Solution

- A solution exists if and only if $0 \leq k \leq n(n-1)$.
- The following construction works for all cases:

Problem Author: Paul Wild

Problem

Given integers n and k, draw n circles in the plane so that there are exactly k intersection points.

Solution

- A solution exists if and only if $0 \leq k \leq n(n-1)$.
- The following construction works for all cases:

Problem

Given integers n and k, draw n circles in the plane so that there are exactly k intersection points.

Solution

- A solution exists if and only if $0 \leq k \leq n(n-1)$.
- The following construction works for all cases:

Problem Author: Paul Wild

Problem

Given integers n and k, draw n circles in the plane so that there are exactly k intersection points.

Solution

- A solution exists if and only if $0 \leq k \leq n(n-1)$.
- The following construction works for all cases:

Problem Author: Paul Wild

Problem

Given integers n and k, draw n circles in the plane so that there are exactly k intersection points.

Solution

- A solution exists if and only if $0 \leq k \leq n(n-1)$.
- The following construction works for all cases:

2 intersections

Problem

Given integers n and k, draw n circles in the plane so that there are exactly k intersection points.

Solution

- A solution exists if and only if $0 \leq k \leq n(n-1)$.
- The following construction works for all cases:

1 intersections

Problem Author: Paul Wild

Problem

Given integers n and k, draw n circles in the plane so that there are exactly k intersection points.

Solution

- A solution exists if and only if $0 \leq k \leq n(n-1)$.
- The following construction works for all cases:

Problem Author: Michael Zündorf

Problem

Given pairs (a, b), multiply them with a value in $[0,1]$, sum them up such that the result is as big as possible and the ratio between a and b is x.

B: Basic Brewing

Problem

Given pairs (a, b), multiply them with a value in $[0,1]$, sum them up such that the result is as big as possible and the ratio between a and b is x.

Solution

We can partition the input into two sets:

- Those pairs with $\frac{a}{b} \geq x$
- Those with $\frac{a}{b}<x$

Observe that an optimal solution always contains all entries of one of the sets.

- Take all entries from set A and add entries from set B one by one.
- Getting as much as possible \Longleftrightarrow approach ratio x as slow as possible.
- Thus, first take entries with ratio close to x.

The total runtime is in $\mathcal{O}(n \log (n))$ to sort entries by their ratio.

A: Alohomora and Colloportus

Problem Author: Michael Zündorf

Problem

Given a Graph G, change the edges of a single vertex such that the resulting graph is a simple cycle.

Problem Author: Michael Zündorf

Problem

Given a Graph G, change the edges of a single vertex such that the resulting graph is a simple cycle. Alternatively, check whether G without a single vertex is a path.

A: Alohomora and Colloportus

Problem Author: Michael Zündorf

Problem

Given a Graph G, change the edges of a single vertex such that the resulting graph is a simple cycle. Alternatively, check whether G without a single vertex is a path.

Solution

We only need to check a constant number of candidate vertices:

1. One vertex with degree greater 3 .
2. All vertices with degree 3 which are adjacent to all other vertices with degree 3 .
3. One vertex with degree 0 .
4. One vertex with degree 1 .
5. One vertex.

The check if G without a vertex is a path can be done in $\mathcal{O}(n)$ and thus, the solution is in $\mathcal{O}(n)$.

Problem Author: Michael Zündorf

Problem

Given a string where runs of consecutive equal characters are removed if the run has length larger then k, simulate q inserts of characters into this string.

Problem

Given a string where runs of consecutive equal characters are removed if the run has length larger then k, simulate q inserts of characters into this string.

Solution

- You just need to simulate this efficiently.
- Either use a treap and keep track of run lengths.
- Or a binary search tree which contains runs.
- In both cases your data structure needs to efficiently do this:
- Insert a character at a position.
- Find the length of a run at a position.

Total runtime $\mathcal{O}(q \log (n))$

Problem Author: Michael Zündorf

Problem

Given a text with n words separated by spaces with total length W, replace some spaces with newlines such that the total height plus width of the text is minimized.

D: Document Dimensions

Problem Author: Michael Zutindorf

Problem

Given a text with n words separated by spaces with total length W, replace some spaces with newlines such that the total height plus width of the text is minimized.

Solution

- For a given width w we can find the minimal height greedily by only adding newlines when needed.
- The next position where a newline is needed can be found in $\mathcal{O}(1)$ with a prefix sum over the lengths of the words.
- Therefore, the minimal height can be found in $\mathcal{O}\left(\frac{W}{w}\right)$.

D: Document Dimensions

Problem Author: Michael Zutindorf

Problem

Given a text with n words separated by spaces with total length W, replace some spaces with newlines such that the total height plus width of the text is minimized.

Solution

- For a given width w we can find the minimal height greedily by only adding newlines when needed.
- The next position where a newline is needed can be found in $\mathcal{O}(1)$ with a prefix sum over the lengths of the words.
- Therefore, the minimal height can be found in $\mathcal{O}\left(\frac{W}{W}\right)$.
- Calculating this for every width is in $\mathcal{O}(W \log (W))$.

Problem Author: Gregor Schwarz

Problem

Determine the number of water carriers that Harry needs to travel d days through the desert. Each person can carry c units of water but needs to drink 1 water unit a day.

Problem Author: Gregor Schwarz

Problem

Determine the number of water carriers that Harry needs to travel d days through the desert. Each person can carry c units of water but needs to drink 1 water unit a day.

Solution

- Distribute water among carriers so that Harry reaches day $d-c$ and still has full water capacity.
- From day $d-c$ onward, Harry travels alone.
- $c-2 \geq d-c$ must hold so that the last water carrier can return home.
- Simulate how far Harry can get with n water carriers. Binary search the minimum value for n.
- Alternative: Start at day $d-c$ with only one water carrier. Move the timeline backwards and add additional water carriers when necessary.

Language stats

Random facts

Jury work

- 260 commits

Random facts

Jury work

- 260 commits
- 522 secret test cases (≈ 40 per problem)

Random facts

Jury work

- 260 commits
- 522 secret test cases (≈ 40 per problem)
- 103 jury solutions

Random facts

Jury work

- 260 commits
- 522 secret test cases (≈ 40 per problem)
- 103 jury solutions
- The minimum number of lines the jury needed to solve all problems is

$$
32+36+13+31+7+29+9+11+9+16+7+4+69=273
$$

On average 21 lines per problem

